The role of antenatal education on maternal self-efficacy, fear of childbirth, and birth outcomes: A systematic review and meta-analysis

Amal Zaman^{1*}, Hammad A. Fadlalmola^{2*}, Sara E. Ibrahem^{3*}, Fathia H. Ismail⁴, Huda H. Abedelwahed³, Amira M. Ali⁵, Nafesa H. Abdelgadim³, Amna M. A. Mustafa³, Insaf H. Ahmed³, Nasreldeen M. Ahmed³, Amna A. Eltyeb³, Dalia A. Gaafar⁶, Soad M. Alnassry³, Afaf A. Adam³, Nagat S. Yasin³, Rasha A. Ali³, Aida A. Fadlalla³, Amira E. Eltayeb⁷, Amira M. Saad^{8,9}

ABSTRACT

INTRODUCTION Antenatal education programs aim to prepare expectant mothers for childbirth and early parenthood. This meta-analysis assessed the impact of these programs on maternal psychological outcomes and birth experiences, focusing on childbirth self-efficacy, fear of childbirth, and maternal and neonatal outcomes, including rates of vaginal delivery, cesarean section, Apgar scores, and birth weight.

METHODS A systematic search was conducted in PubMed, Web of Science, SCOPUS, and Cochrane Library until July 2024. Randomized controlled trials (RCTs) comparing antenatal education to standard care were included. Data were synthesized using meta-analysis with standardized mean differences (SMD) for continuous outcomes and risk ratios (RR) for dichotomous outcomes.

RESULTS Forty studies were reviewed, with 31 eligible for meta-analysis. Among 1116 pregnant women, antenatal education significantly increased childbirth self-efficacy (SMD=2.00; 95% CI: 1.06–2.95, p<0.0001) and decreased fear of childbirth (SMD= -1.26; 95% CI: -1.79 – -0.74, p<0.00001). Maternal outcomes showed higher vaginal delivery rates (RR=1.10; 95% CI: 1.04–1.16, p=0.0004) and lower cesarean rates (RR=0.80; 95% CI: 0.70–0.92, p=0.001). No significant differences were found in episiotomy rates, Apgar scores, or birth weight.

CONCLUSIONS Antenatal education improves maternal psychological outcomes and promotes vaginal delivery. However, high heterogeneity and potential bias in the studies limit generalizability. More research is needed on long-term impacts and effectiveness in low-resource settings.

Eur J Midwifery 2025;9(March):13

https://doi.org/10.18332/ejm/200747

INTRODUCTION

Pregnancy and childbirth are transformative experiences in a woman's life, accompanied by significant physical, emotional, and psychological changes^{1,2}. As expectant mothers navigate this journey, they often face uncertainties, anxieties, and fears about the birthing process and their ability to care for a newborn³. In recent years, there has been growing recognition of the importance of antenatal education in preparing women for childbirth and early parenthood⁴.

Antenatal education, also known as childbirth preparation or prenatal classes, typically offers expectant parents information on pregnancy, labor, delivery, and early infant care⁵. These programs vary in content and delivery methods but aim to empower women with knowledge and skills to manage pregnancy, childbirth, and postpartum⁶. While the primary goal of antenatal education is to improve maternal and neonatal outcomes, its potential to influence psychological factors such as self-efficacy and fear of birth has gained increasing attention from researchers and healthcare professionals^{7,8}.

Self-efficacy, introduced by Bandura⁹, refers to an individual's belief in their ability to perform specific tasks or behaviors successfully. In childbirth and parenting, self-efficacy is crucial in how women approach and experience these life-changing events¹⁰. Higher

AFFILIATION

- 1 College of Medicine, Department of Obstetrics and Gynecology, Taibah University, Al Madinah Munawara, Saudi Arabia 2 Department of Community Health Nursing, Nursing College, Taibah University, Al Madinah Munawara, Saudi Arabia 3 Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia 4 Department of Nursing, College of Applied Medical Sciences, Buraydah Private Colleges, Qassim, Saudi Arabia 5 Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria,
- 6 Department of Human Physiology, Jazan University, Saudi Arabia
- 7 Nursing College, Al Baha University, Al Baha, Saudi Arabia 8 College of Applied Medical Sciences, University of Hafr Al Batin, Saudi Arabia
- 9 Faculty of Nursing, TantaUniversity, Egypt* Contributed equally

CORRESPONDENCE TO

Hammad A. Fadlalmola.
Department of Community
Health Nursing, College of
Nursing, Taibah University, Al
Madinah Munawara, Janadah Bin
Umayyah Road, Tayba, Madinah
42353, Saudi Arabia.
E-mail: Hazzminno345@gmail.
com

ORCID iD: <u>https://orcid.</u> org/0000-0002-5065-9626

KEYWORDS

antenatal education, maternal self-efficacy, fear of childbirth,

levels of self-efficacy have been associated with improved coping mechanisms during labor, reduced pain perception, and greater satisfaction with the birthing experience¹¹. Furthermore, mothers with higher self-efficacy in childcare tend to exhibit more positive parenting behaviors and adapt more readily to the challenges of early parenthood¹².

On the other hand, fear of birth, also known as tokophobia, is a significant concern for many expectant mothers¹³. This fear can range from mild anxiety to severe phobia and may have detrimental effects on both maternal and fetal wellbeing¹⁴. Women experiencing high levels of fear of birth are more likely to request elective cesarean sections, experience prolonged labor, and report negative birth experiences¹⁵. Additionally, fear of birth has been linked to an increased risk of postpartum depression and difficulties in mother-infant bonding¹⁶.

Various sociocultural factors and healthcare system variables further complicate the relationship between antenatal education, self-efficacy, and fear of birth. Cultural beliefs and practices surrounding pregnancy and childbirth can significantly influence women's expectations and experiences¹⁷. These cultural perspectives shape how women perceive their ability to cope with childbirth and their level of fear. Additionally, the structure and accessibility of healthcare systems play a crucial role in determining the quality and reach of antenatal education programs¹⁸. Factors such as healthcare policies, resource allocation, and the training of healthcare providers all contribute to the effectiveness of these interventions¹⁸. Moreover, the increasing trend toward digital health solutions has led to online antenatal education programs, offering new opportunities and challenges in preparing expectant mothers for childbirth and parenting¹⁹.

Antenatal education programs aim to improve maternal psychological outcomes and have significant implications for maternal and neonatal birth outcomes. These programs can influence various aspects of childbirth, including the mode of delivery, with studies showing increased rates of vaginal delivery and decreased rates of cesarean sections among participants. Additionally, antenatal education has been associated with better neonatal outcomes, such as higher Apgar scores and healthier birth weights. By equipping expectant mothers with knowledge and coping strategies, these programs can enhance maternal confidence and reduce anxiety, leading to more positive birth experiences and improved health outcomes for both mothers and their newborns.

Despite the growing body of research on antenatal education programs, there remains a significant gap in the literature regarding their comprehensive impact on both maternal psychological outcomes and birth outcomes. Previous studies have often focused on isolated aspects, such as self-efficacy or fear of childbirth, without providing a holistic view of how these programs influence a range of maternal and neonatal outcomes. Additionally, the variability in study designs and outcome measures has led to inconsistent findings, making it challenging to draw definitive conclusions. This meta-analysis aims to address these gaps by systematically evaluating the impact of antenatal edu-

cation on maternal psychological outcomes, as well as its secondary aim of assessing the effects on birth outcomes, including mode of delivery, Apgar scores, and infant birth weight. By investigating these relation-

birth outcomes, systematic review

Received: 15 August 2024 Revised: 7 September 2024 Accepted: 2 February 2025

ships, we aim to provide valuable insights that can inform the development and implementation of more effective antenatal education interventions.

METHODS

The current study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and the Cochrane Handbook for Systematic Reviews of Interventions^{20,21}.

Information sources and search strategy

We used generic terms to search databases like PubMed, Scopus, Web of Science, and Cochrane Library to identify relevant articles from inception to July 2024. The search was performed using relevant keywords and Medical Subject Headings terms related to antenatal education, self-efficacy, fear of birth, and maternal and neonatal outcomes. Additionally, we manually searched the references of published articles to identify trials not found in the other databases. The detailed search strategy and terms are shown in Supplementary file Table 1.

Study selection

To minimize bias, two independent reviewers (SEI and FHI) screened the titles and abstracts of all available records after removing identifying data such as author names and affiliations. They used a checklist of eligibility criteria to guide their screening process. A third reviewer (HHA) was available to resolve any conflicts. After this initial screening, the two reviewers evaluated the full texts of the selected articles for eligibility, comparing their results to resolve any remaining disagreements.

Eligibility criteria

Studies were eligible for inclusion if they met the following criteria: the study design had to be a randomized controlled trial (RCT); and participants were required to be pregnant women, focusing the review on antenatal education's impact on maternal self-efficacy, fear of childbirth, and birth outcomes. Studies were excluded if they were not an RCT, did not involve pregnant participants, single-arm studies, or reviews. The incuded studies were grouped for the syntheses based on the specific outcomes they measured, such as self-efficacy, fear of childbirth, and various birth outcomes.

Data items

The intervention of interest was antenatal education programs, comparing their effectiveness to standard care or no intervention. In this study, there were changes in self-efficacy regarding childbirth and fear of childbirth.

Self-efficacy in childbirth was typically measured using validated scales such as the Childbirth Self-Efficacy Inventory²² or similar scales. These scales assess women's confidence in coping with labor and delivery, with higher scores indicating increased self-efficacy and a positive outcome. Fear of childbirth was commonly evaluated using tools like the Wijma Delivery Expectancy/ Experience Questionnaire²³ or other validated fear of childbirth scales. Lower scores on these scales indicate a reduction in fear, considered a favorable outcome. Secondary outcomes assessed maternal outcomes, such as the frequency of vaginal delivery, cesarean section, and episiotomy, as well as neonatal outcomes, including Apgar scores at 1 and 5 minutes, infant birth weight, and the incidence of low birth weight. All results compatible with each outcome domain in each study were sought, including all measures, time points, and analyses if applicable. If not all results were collected, methods used to decide which results to collect were based on the relevance and availability of data. Other variables for which data were sought included participant characteristics (e.g. age, parity, socio-economic status) and intervention characteristics (e.g. type, duration, and frequency of antenatal education). Assumptions were made about missing or unclear information by contacting study authors for clarification.

Data extraction and quality assessment

Data were extracted from the included studies using a standardized form. Extracted information included study characteristics, participant demographics, participants' characteristics related to maternity history (e.g. gestational weeks), intervention details, outcome measures, and results. Two investigators (AAEA and NHA) independently extracted the data, and a third investigator (DAG) assisted in resolving disagreements.

The methodological quality of the included studies was assessed using the Cochrane risk of bias tool for randomized trials version 2 (RoB2). Two investigators (IHA and NMA) independently assessed each study, and no automation tools were used in this process²⁴. We also employed the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) criteria to provide a broader assessment of the confidence in the overall evidence supporting the outcomes of interest. We conducted publication bias analysis using funnel plots for primary outcomes using RevMan 5.4 software and considered statistical tests for funnel plot asymmetry, such as Egger's test and Begg's test.

Data synthesis

We performed meta-analyses using Review Manager RevMan software (version 5.4). For continuous outcomes, we calculated standardized mean difference (SMD) or mean difference (MD) with 95% confidence interval (CI). For dichotomous outcomes, we used risk ratios (RR). We used the fixed effect model with homogenous data.

Heterogeneity was assessed using the I^2 statistic and p-value of heterogeneity, with p<0.1 indicating high heterogeneity. The thresholds for the I^2 statistic were as

follows: 0–40% might not be important, 30–60% may represent moderate heterogeneity, 50–90% may represent substantial heterogeneity, and 75–100% considerable heterogeneity²⁰. When significant heterogeneity was detected (p<0.1), we used a random effect model and conducted sensitivity analyses by excluding studies that contributed significantly to the heterogeneity.

We decided which studies were eligible for each synthesis by tabulating the study's primary and secondary outcomes and comparing them against the planned groups for each synthesis. Methods required to prepare the data for presentation or synthesis included handling missing summary statistics by contacting study authors for clarification or using imputation methods where appropriate and data conversions when necessary.

RESULTS

Our search yielded 5731 PubMed, Web of Science, Cochrane Library, and SCOPUS records. After removing 2059 duplicates, 3672 records underwent title and abstract screening, resulting in 3625 exclusions. The full-text screening was conducted on 47 reports, excluding seven additional records due to duplicates, having irrelevant controls, addressing psychotherapy instead of education, or focusing on fathers. Finally, 40 studies were included in the systematic review, with 31 eligible for meta-analysis (Figure 1).

Baseline and characteristics of the included studies

The included studies were conducted in diverse settings, such as Turkey, Iran, Jordan, Nigeria, Denmark, and the USA. The educational content of antenatal courses varied widely, covering reproductive system changes, pregnancy physiology, birth preparedness, postpartum care, and breastfeeding techniques. The study duration ranged from a few months to several years. Participants' gestational weeks at the start of interventions ranged from as early as 12 weeks²⁵ to the last trimester. Sample sizes ranged from 29 to 13737 participants. The mean age of participants also varied widely, with studies reporting means ranging from 18.20 to 32.8 years (Table 1)²⁵⁻⁶³.

Quality assessment

Four studies were classified as having a high risk of bias using the RoB2 quality assessment tool, three of which showed high risk in the domain of missing outcome data and one study in the randomization process. Another five studies were classified as having some concerns, with four showing some concerns in the domain of the randomization process and one study in the selection of the reported result domain. The other 31 were rated as having an overall low risk of bias (Supplementary file Figures 1 and 2).

Primary outcomes

Change in self-efficacy on childbirth

The pooled analysis of 12 RCTs, involving 1116 pregnant women, showed a significant increase in the self-efficacy on childbirth in the group that received antenatal (AN) education compared with the control group

Figure 1. Flow diagram of study selection and inclusion process of the systematic review for the role of antenatal education on maternal self-efficacy, fear of childbirth, and birth outcomes

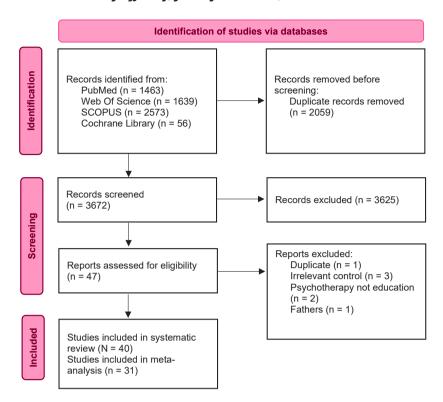


Figure 2. Forest plot of the effect of antenatal education on childbirth self-efficacy

	Antena	Antenatal Education		Control			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Abbasi et al. 2017	142.3	38.24	101	7	24.2	52	8.4%	3.94 [3.38, 4.50]	-
AlSomali et al. 2019	38.83	68.01	46	4.45	77.88	48	8.5%	0.47 [0.06, 0.88]	-
Aslantekin Özçoban et al. 2022	1.08	7.5	56	0.62	9.96	73	8.5%	0.05 [-0.30, 0.40]	+
Calpbinici et al. 2022	44	32.68	37	-9.58	43.7	36	8.4%	1.38 [0.86, 1.89]	
Dai et al. 2021	12.92	13.49	26	1.63	17.96	30	8.4%	0.69 [0.15, 1.24]	 -
Duncan et al. 2017	78.2	96.6	15	14.7	60.45	14	8.2%	0.76 [0.00, 1.52]	├ ─
Firouzan et al. 2020	122.26	132.6	35	-56.94	174.5	33	8.4%	1.15 [0.63, 1.66]	-
Hatamleh et al. 2023	45.53	28.49	64	6.08	34.98	64	8.5%	1.23 [0.85, 1.61]	-
Madhavanprabhakaran et al. 2017	25.06	4.54	50	1.82	3.11	50	8.0%	5.93 [5.00, 6.85]	→
Rahimparvar et al. 2012	210	26.03	75	0.56	25.94	75	7.9%	8.02 [7.05, 8.99]	
Serçekuş et al. 2016	38.3	58.63	31	1.4	53.18	32	8.4%	0.65 [0.14, 1.16]	 -
Yesildag et al. 2024	75.08	40.91	37	61.55	28.93	36	8.4%	0.38 [-0.09, 0.84]	-
Total (95% CI)			573			543	100.0%	2.00 [1.06, 2.95]	•
Heterogeneity: Tau² = 2.72; Chi² = 4	•	11 (P < 0	.00001)	; I² = 98°	%				-10 -5 0 5 10
Test for overall effect: $Z = 4.14$ (P < 0).0001)								Control Antenatal Education

(SMD=2.00; 95% CI: 1.06–2.95, p<0.0001) (Figure 2). The data showed unresolvable heterogeneity (p<0.00001, I²=98%), which could not be adequately explained or reduced even after conducting additional analyses (e.g. subgroup analyses, sensitivity analyses, or using different statistical models). Possible causes of heterogeneity among study results include variations in study design, population characteristics, and intervention protocols. There appears to be some evidence of publication bias for self-efficacy, as the funnel plot shows an asymmetrical distribution, suggesting a potential bias (Supplementary file Figure 3).

Change in fear of childbirth

AN education significantly decreased the fear of childbirth in pregnant women compared with the control group based on the pooled analysis of 12 RCTs, including 879 women (SMD= -1.26; 95% CI: -1.79 – -0.74, p<0.00001) (Figure 3). Still, the data showed unresolvable heterogeneity (p<0.00001, I²=92%), which could not be adequately explained or reduced after additional analyses. Possible causes of heterogeneity include differences in the measurement tools used and the timing of the interventions. The fear of birth funnel plot also shows some asymmetry, indicating a possible bias (Supplementary file Figure 4).

Table 1. Summary and baseline of the included studies

Author Year	Location	Study duration	Educational content	Gestational weeks	Sessions	Primary outcomes	Follow-up	Conclusions	Study arms	Sample	Age (years) Mean ± SD
Aba et al. ²⁵	Turkey	August 2011	Reproductive	12-17	6	PSEQ, PPSEQ, NPI	The follow-	Antenatal	AN	35	18.20 ± 0.99
2017		and October 2013	system, pregnancy physiology, maternal changes, exercise, postpartum care, breastfeeding				up spanned approximately 30 weeks, from the 12th week of pregnancy to the fourth week after delivery	education improved prenatal and early postpartum adaptation	Control	35	18.03 ± 0.89
Abbasi et al. ²⁶	Iran	October 2015	Pregnancy	32-36	Weekly	CBSEI	Till delivery	E-learning	AN-Software	50	25.5 ± 3.8
2017		and April 2016	modification, exercises,		reminders			and booklets boosted childbirth	AN-Booklet	51	25.9 ± 3.6
			breathing, relaxation					confidence	Control	52	25.1 ± 3.2
Abuidhail et al. ²⁷	Jordan	-	Breastfeeding	29–36	2 weeks	Breastfeeding	Two weeks	No significant	AN	59	27.7 ± 4.9
2019			benefits, techniques, problems, storage		access	knowledge, attitude, self-efficacy	postpartum	differences, but it may enhance self- efficacy	Control	59	
Akinwaare et al. ²⁸	Nigeria	March 2019	Birth	20-24	20-min +	BPCR, institutional	Twelve weeks	Enhanced birth	AN	200	27.4 ± 4.9
2023		and January 2020	preparedness, complication readiness		10-min interactive	delivery	post-intervention	preparedness and institutional delivery rates	Control	200	27.1 ± 5.1
Aksoy Derya et	Turkey	April and May,	Tele-education	Last trimester	5 (15–20	Prenatal distress,	After one-week	Reduced distress	AN	48	28.70 ± 4.73
al. ²⁹ 2021		2020	on pregnancy, birth, COVID-19		min each)	pregnancy anxiety	tele-education intervention	and anxiety	Control	48	28.06 ± 4.12
AlSomali et al. ³⁰	Saudi	-	Antenatal	28–33	2 (2 h 50	Prenatal distress,	Pretest and posttest	Boosted maternal	AN	46	-
2019	Arabia		education on pregnancy, birth, COVID-19		min each)	pregnancy anxiety	data collection	self-efficacy	Control	48	
Aslantekin	Turkey	July 2018 to	Birth preparation	Second	15 (3/week,	Pregnancy	Pretest and posttest	Improved most	AN	56	-
Özçoban et al. ³¹ 2022		April 2019		trimester	5 weeks)	acceptance, motherhood role, birth fear, self- efficacy, health literacy	data collection	scales except birth fear	Control	73	

Continued

Table 1. Continued

Author Year	Location	Study duration	Educational content	Gestational weeks	Sessions	Primary outcomes	Follow-up	Conclusions	Study arms	Sample	Age (years) Mean ± SD
Citak Bilgin et	Turkey	September	Delivery fear,	Second	5/weekly	POBS, BSES-SF,	One month post-birth	Improved birth	AN	65	27.54 ± 3.78
al. ³² 2019		2015 to June 2017	birth stages, pain management, newborn care	trimester		VAS		perception and breastfeeding self- efficacy	Control	57	27.23 ± 4.82
Brixval et al. ³³	Denmark	August 2012	NEWBORN	25–35	3 (2.5 h	Epidural use	Till 9 weeks	No difference	AN	883	30.7 ± 4.1
2016		to May 2014	program		each)		postpartum	in pain relief or interventions	Control	883	30.8 ± 4.1
Calpbinici et al. ³⁴	Turkey	August 2019	Motivational	24-28	-	W-DEQ A/B,	Till 24 hours after	Reduced fear,	AN	37	-
2022		to February 2020	interview for childbirth fear			CBSEI-SF	delivery	increased self- efficacy, no impact on delivery mode	Control	36	
Çankaya et al. ²⁴	Turkey	April to	Birth fear,	20-32	8 (4 h each)	Fear, self-efficacy,	6-8 weeks	Significant clinical	AN	57	26.4 ± 3.1
2020		September 2019	dynamics, coping, postpartum care			anxiety, stress, depression, delivery mode	postpartum	benefits during pregnancy and postpartum	Control	59	25.3 ± 3.7
Dai et al. ³⁵	China	October 2018	Simulation-	24-32	4 (70 min	WDEQ-A, CBSEI	Till delivery	An effective	AN	26	28.42 ± 2.53
2021		to November 2019	based childbirth education		each)			method for childbirth education	Control	30	28.20 ± 2.19
Desmawati et al. ³⁶	Indonesia	June 2016 to	Non-	32	Daily until	VAS, PBOS	Till delivery	Reduced pain,	AN	41	-
2019		January 2017	pharmacological pain relief, Islamic praying		delivery			increased pain behaviors	Control	42	
Duncan et al. ³⁷	USA	In 2014	Mindfulness-	29–36	18-h	CBSEI	6 weeks postpartum	Improved childbirth	AN	15	-
2017			based childbirth and parenting		weekend workshop			appraisals, reduced postpartum depression risk	Control	14	
Escott et al. ³⁸	England	February to	Coping strategy	32	5 (2 h each)	Coping strategy	Three days pot	Enhanced coping	AN	20	29 ± 5.9
2005		October 2000	enhancement vs standard			use, pain, emotional experience	delivery	strategy use and birth companion involvement	Control	21	29 ± 6.7
Firouzan et al. ³⁹	Iran	February to	BELIEF approach,	20-23	2 face-	W-DEQ, childbirth	Post-test	Reduced fear,	AN	35	26.27 ± 4.48
2020		September 2019	telephone counseling		to-face, 8 phone	self-efficacy, preference	assessments after the intervention	increased self- efficacy	Control	33	25.87 ± 4.58

Continued

Table 1. Continued

Author Year	Location	Study duration	Educational content	Gestational weeks	Sessions	Primary outcomes	Follow-up	Conclusions	Study arms	Sample	Age (years) Mean ± SD
Franzon et al.40	Brazil	August 2015	PRENACEL	<20	4 texts/	Preparedness,	Until hospital	Improved	AN	116	-
2019		to February 2016	program		week	outcomes, intervention knowledge, care satisfaction	discharge	preparedness for birth	Control	440	
Gandomi et al. ⁴¹	Iran	May to	Self-efficacy	26-28	8 (90 min	Anxiety, neonatal	One month after the	Reduced anxiety,	AN	30	23.8 ± 3.31
2022		September 2017	focused intervention		each)	outcomes	intervention	improved pregnancy outcomes	Control	30	23.3 ± 3.60
Gao et al. ⁴²	China	July 2008 to	IPT-oriented	>28	2 (90 min)	PSSS, PSOC-E,	Three months	Beneficial for	AN	96	28.47 ± 2.80
2012		May 2009	childbirth education		+ phone follow-up	EPDS, GHQ	postpartum	first-time Chinese mothers	Control	98	28.38 ± 2.73
Hatamleh et al. ⁴³	Jordan	July to	Class-based	≥32	3 (40 min	Birth outcomes,	48 hours post-birth	Increased	AN	64	32.8 ± 3.65
2019		September 2016	program + WhatsApp		each)	breastfeeding initiation		spontaneous labor onset, earlier breastfeeding	Control	64	
Hatamleh et al.44	Jordan	July to	Individualized	≥32	3 (40 min	CBSEI, STAI	3 weeks after	Enhanced coping,	AN	64	23.8 ± 3.91
2023		September 2016	childbirth education		each)		completing all educational sessions	reduced anxiety	Control	64	
lp et al. ⁴⁵	Hong Kong	August 2003	Self-efficacy and	32–34	2 (2 h 50	OE, EE, anxiety, pain,	24–48 hours after	Promoted self-	AN	60	27.88 ± 5.07
2009		and April 2004	coping skills		min each)	coping	delivery	efficacy, reduced pain and anxiety	Control	73	27.81 ± 5.09
Khademioore et	Iran	February to	Tele-midwifery	26–29	8 weeks,	FOC, self-efficacy,	Two hours after birth	Reduced fear,	AN	35	24.3 ± 3.5
al. ⁴⁶ 2023		April 2020	application		3–4 msgs/ day	delivery mode		increased self- efficacy, decreased C-sections	Control	35	25.6 ± 3.5
Kronborg et al. ⁴⁷	Denmark	May 2006 to	'Ready for Child'	30–35	3 (3 h each)	Breastfeeding	One year postpartum	Increased	AN	587	28.9 ± 3.7
2012		May 2007	program			duration		breastfeeding confidence and knowledge	Control	575	29.2 ± 3.7
Madhavanprabha-	India	Between	Planned	Third	3	Anxiety, knowledge,	Two weeks after the	Reduced anxiety	AN	50	-
karan et al. ⁴⁸ 2017		2004 and 2005	childbirth educational program	trimester		pregnancy outcomes	final educational session	and adverse outcomes	Control	50	

Continued

Table 1. Continued

Author Year	Location	Study duration	Educational content	Gestational weeks	Sessions	Primary outcomes	Follow-up	Conclusions	Study arms	Sample	Age (years) Mean ± SD
Maimburg et al. ⁴⁹	Denmark	May 2006 to	'Ready for Child'	30–35	3 (3 h each)	Birth process,	One year postpartum	Improved coping	AN	587	28.9 ± 3.7
2010		May 2007	program			interventions, experience		with the birth process	Control	575	29.2 ± 3.7
Maimburg et al. ⁵⁰	Denmark	May 2006 to	'Ready for Child'	30–35	3 (3 h each)	Cambridge Worry	One year postpartum	Lower worry levels,	AN	587	28.9 ± 3.7
2013		May 2007	program			Scale		especially birth- related	Control	575	29.2 ± 3.7
Mehdizadeh et	Iran	July 2000 to	Birth preparation	>20	8	Pain, daily activity	Till delivery	Improved maternal	AN	100	-
al. ⁵¹ 2005		March 2001	classes					and newborn health	Control	100	
Mohaghegh et	Iran	December	Childbirth	32–33	8 (90 min)	Birth mode,	12–24 hours after	Increased normal	AN	150	29.11 ± 4.72
al. ⁵² 2023		2020 to June 2021	preparation + birth plan		+ 1	labor duration, satisfaction	birth	births and satisfaction	Control	150	28.90 ± 4.81
Mullany et al. ⁵³	Nepal	August 2003	Pregnancy	16-28	2 (35 min	Birth preparedness,	Postpartum discharge	No significant	AN	148	22.0 ± 3.6
2006		to January 2004	care, birth preparedness		each)	healthcare utilization		differences in outcomes	Control	149	22.6 ± 3.3
Noel-Weiss et	Canada	August 2004	Prenatal	>34	1 (2.5 h)	Breastfeeding self-	8 weeks postpartum	Improved	AN	47	-
al. ⁵⁴ 2006		to February 2005	breastfeeding workshop			efficacy, duration		self-efficacy, increased exclusive breastfeeding	Control	45	
Öztürk et al. ⁵⁵	Turkey	November	Breastfeeding	Pre-delivery	2 (4 h each)	Breastfeeding self-	One week postpartum	Enhanced self-	AN	34	-
2022		2016 to January 2018	education			efficacy, success		efficacy, increased success	Control	33	
Rahimparvar et	Iran	October 2010	Educational	28-32	Accessible	CBSEI, STAI	Till delivery	Improved self-	AN	75	25.17 ± 3.89
al. ⁵⁶ 2012		to February 2011	software (CD)		anytime			efficacy in coping with labor	Control	75	24.79 ± 4.21
Sabri Piro et al. ⁵⁷	Iraq	October 2017	Breastfeeding	30–38	2 (60–90	BF knowledge,	Two months after	Increased self-	AN	65	26.80 ± 6.60
2020		to July 2018	education		min each)	attitudes, self- efficacy	childbirth	efficacy, promoted exclusive BF	Control	65	26.38 ± 6.80
Serçekuş et al. ⁵⁸	Turkey	March 2012	Comprehensive	26–28	8 (120 min	W-DEQ, CBSEI, MAI,	6 months postpartum	Recommended	AN	31	28.8 ± 2.2
2016		to January 2014	antenatal education		each)	PPAQ		implementation in developing countries	Control	32	27.7 ± 4.5
Turkstra et al. ⁵⁹	Australia	May 2012 to	Telephone	24-34	2	WDEQ-A	6 months postpartum	No enhancement	AN	95	30.5 ± 4.98
2017		June 2013	psycho- education					in health-related quality of life	Control	89	30.2 ± 5.82

Table 1. Continued

Author Year	Location	Study duration	Educational content	Gestational weeks	Sessions	Primary outcomes	Follow-up	Conclusions	Study arms	Sample	Age (years) Mean ± SD
Uludağ et al. ⁶⁰	Turkey	October to		24-34	8 (4 h each)	OWLS, FOBS, PSEQ,	Post-test	Improved labor	AN	23	26.69 ± 4.93
2022		December 2021				FCV-19S	assessments after the intervention	preparedness during COVID-19	Control	21	25.66 ± 4.58
Xie et al. ⁶¹	China	October 2011	WHO materials	Throughout	Text	Maternal/perinatal	Within 42 days	No significant	AN	6771	-
2018		to August 2012	via text messages		messages	outcomes	postpartum	differences	Control	6966	
Yesildag et al. ⁶²	Turkey	January to	Web-based	28-30	5 weeks	W-DEQ A, CSES,	Till 24 hours after	Reduced fear,	AN	37	-
2024		July 2022	program + motivational interviews			BHBS	delivery	increased self- efficacy	Control	36	
Zafman et al. ⁶³	USA	April 2021 to	Birthing online	<20	5 courses	PrAS	Postpartum discharge	Reduced anxiety,	AN	45	23.7 ± 4.5
2023		April 2022	program					decreased emergency care use	Control	45	23.7 ± 4.7

AN: antenatal. CBSEI: Childbirth Self-Efficacy Inventory. PSEQ: Prenatal Self-Efficacy Questionnaire. PPSEQ: Postpartum Self-Efficacy Questionnaire. NPI: Neonatal Perception Inventory. BPCR: Birth Preparedness and Complication Readiness. CBSEI-SF: Childbirth Self-Efficacy Inventory-Short Form. W-DEQ A/B: Wijma Delivery Expectancy/Experience Questionnaire A/B. POBS: Pain Outcomes Brief Scale. BSES-SF: Breastfeeding Self-Efficacy Scale-Short Form. VAS: Visual Analog Scale. NEWBORN: Newborn Care Program. PSSS: Perceived Social Support Scale. PSOC-E: Parent Stress Index-Early Childhood. EPDS: Edinburgh Postnatal Depression Scale. GHQ: General Health Questionnaire. FOC: fear of childbirth. OE: overall experience. EE: emotional experience. CSES: Coping Self-Efficacy Scale. BHBS: Breastfeeding and Health Behavior Scale. OWLS: Overall Wellness Scale. FOBS: Fear of Birth Scale. FCV-19S: Fear of COVID-19 Scale. PrAS: Pregnancy and Childbirth Anxiety Scale.

Figure 3. Forest plot of the effect of antenatal education on fear of childbirth

	Antenatal Education		ntion	Control				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Aksoy Derya et al. 2021	-2.06	5.94	48	0.73	6.29	48	8.8%	-0.45 [-0.86, -0.05]	
Aslantekin Özçoban et al. 2022	-0.52	2.52	56	0.11	2.86	73	8.9%	-0.23 [-0.58, 0.12]	
Calpbinici et al. 2022	-33.71	22.39	37	0.87	22.88	36	8.5%	-1.51 [-2.04, -0.99]	⊸
Çankaya et al. 2020	-24.8	25.4	57	15.2	29.27	59	8.7%	-1.45 [-1.86, -1.04]	→
Dai et al. 2021	-14.54	11.67	26	-3.23	12.04	30	8.4%	-0.94 [-1.49, -0.38]	→ -
Duncan et al. 2017	-10	26.79	15	-4.1	23.96	14	7.8%	-0.23 [-0.96, 0.51]	
Firouzan et al. 2020	-31.23	21.14	35	3.55	14.06	33	8.3%	-1.90 [-2.48, -1.33]	
Gandomi et al. 2022	-3.11	1.23	30	0.26	0.72	30	7.6%	-3.30 [-4.09, -2.51]	
Khademioore et al. 2023	-42.83	9.03	35	-8.77	8.85	35	7.6%	-3.77 [-4.56, -2.97]	
Serçekuş et al. 2016	-22.8	34.32	31	5.9	26.8	32	8.5%	-0.92 [-1.44, -0.40]	
Uludağ et al. 2022	-0.96	3.64	23	0.22	3.22	23	8.3%	-0.34 [-0.92, 0.24]	
Yesildag et al. 2024	-30.81	19.09	37	-20.61	18.21	36	8.6%	-0.54 [-1.01, -0.07]	
Total (95% CI)			430			449	100.0%	-1.26 [-1.79, -0.74]	•
Heterogeneity: Tau ² = 0.78; Chi ² :	= 135.23. (
Test for overall effect: Z = 4.70 (P									-4 -2 U 2 4
		,							Antenatal Education Control

Figure 4. Forest plot of the effect of antenatal education on rate of vaginal delivery: A) Before resolving heterogeneity; B) After resolving heterogeneity

(A) Before resolving heterogeneity

	Antenatal Edu		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events			M-H, Random, 95% CI	M-H, Random, 95% CI
Aba et al. 2017	16	35	18	35	1.0%	0.89 [0.55, 1.44]	
Aksoy Derya et al. 2021	36	48	33	48	3.2%	1.09 [0.85, 1.40]	
Bilgin et al. 2019	64	90	57	83	4.5%	1.04 [0.85, 1.26]	
Brixval et al. 2016	675	858	664	853	11.5%	1.01 [0.96, 1.06]	+
Calpbinici et al. 2022	36	37	34	36	8.9%	1.03 [0.94, 1.13]	+
Çankaya et al. 2020	45	55	37	57	3.6%	1.26 [1.00, 1.58]	-
Dai et al. 2021	17	26	16	30	1.3%	1.23 [0.79, 1.90]	
Escott et al. 2005	19	20	16	21	3.0%	1.25 [0.96, 1.62]	
Franzon et al. 2019	81	116	283	440	6.6%	1.09 [0.95, 1.25]	+-
Gandomi et al. 2022	25	30	13	30	1.2%	1.92 [1.24, 2.98]	
Gao et al. 2012	50	96	44	98	2.5%	1.16 [0.87, 1.55]	 -
Kronborg et al. 2012	475	587	455	575	11.1%	1.02 [0.97, 1.08]	+
Mehdizadeh et al. 2005	97	100	90	100	10.2%	1.08 [1.00, 1.16]	-
Mohaghegh et al. 2023	131	150	76	150	5.4%	1.72 [1.46, 2.04]	
Turkstra et al. 2017	58	89	56	87	3.9%	1.01 [0.81, 1.26]	
Xie et al. 2018	4283	6771	4039	6966	12.4%	1.09 [1.06, 1.12]	•
Yesildag et al. 2024	35	37	33	36	7.3%	1.03 [0.91, 1.17]	
Zafman et al. 2023	28	42	29	41	2.5%	0.94 [0.70, 1.26]	
Total (95% CI)		9187		9686	100.0%	1.10 [1.04, 1.16]	
Total events	6171		5993				
Heterogeneity: Tau ² = 0.0	1: Chi² = 54.46.	df = 17 (F	< 0.000	01): I² =	69%	_	
Test for overall effect: Z=				71 -			0.5 0.7 1 1.5 2 Control Antenatal Educatio

(B) After resolving heterogeneity

	Antenatal Educa	tion	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Aba et al. 2017	16	35	18	35	0.5%	0.89 [0.55, 1.44]	
Aksoy Derya et al. 2021	36	48	33	48	1.7%	1.09 [0.85, 1.40]	
Bilgin et al. 2019	64	90	57	83	2.7%	1.04 [0.85, 1.26]	
Brixval et al. 2016	675	858	664	853	16.9%	1.01 [0.96, 1.06]	+
Calpbinici et al. 2022	36	37	34	36	8.5%	1.03 [0.94, 1.13]	+
Çankaya et al. 2020	45	55	37	57	2.0%	1.26 [1.00, 1.58]	
Dai et al. 2021	17	26	16	30	0.6%	1.23 [0.79, 1.90]	
Escott et al. 2005	19	20	16	21	1.6%	1.25 [0.96, 1.62]	
Franzon et al. 2019	81	116	283	440	4.9%	1.09 [0.95, 1.25]	
Gandomi et al. 2022	25	30	13	30	0.6%	1.92 [1.24, 2.98]	
Gao et al. 2012	50	96	44	98	1.3%	1.16 [0.87, 1.55]	
Kronborg et al. 2012	475	587	455	575	15.1%	1.02 [0.97, 1.08]	+
Mehdizadeh et al. 2005	97	100	90	100	11.7%	1.08 [1.00, 1.16]	+
Mohaghegh et al. 2023	131	150	76	150	0.0%	1.72 [1.46, 2.04]	
Turkstra et al. 2017	58	89	56	87	2.2%	1.01 [0.81, 1.26]	
Xie et al. 2018	4283	6771	4039	6966	22.8%	1.09 [1.06, 1.12]	•
Yesildag et al. 2024	35	37	33	36	5.7%	1.03 [0.91, 1.17]	+
Zafman et al. 2023	28	42	29	41	1.3%	0.94 [0.70, 1.26]	
Total (95% CI)		9037		9536	100.0%	1.06 [1.03, 1.10]	◆
Total events	6040		5917				
Heterogeneity: Tau ² = 0.0	0; Chi² = 23.65, df:	= 16 (F	= 0.10);	l ² = 32 ⁹	%	_	
Test for overall effect: Z =							0.5 0.7 1 1.5 2 Control Antenatal Education

Eur J Midwifery 2025;9(March):13 https://doi.org/10.18332/ejm/200747

Secondary outcomes

Maternal outcomes

Frequency of vaginal delivery

The rate of vaginal delivery showed a significant increase among women who received AN education compared with the control group based on the pooled analysis of 18 RCTs involving 18873 women (RR=1.10; 95% CI: 1.04–1.16, p=0.0004); however, the data were heterogeneous (p<0.00001, I^2 =69%). This heterogeneity was resolved by excluding the study of Mohaghegh et al.⁵² (p=0.10, I^2 =32%), and the results remained significant (RR=1.06; 95% CI: 1.03–1.10, p=0.0007) (Figure 4).

Frequency of cesarean section

In contrast, the pooled analysis of 18 RCTs, including 18873 women, revealed a significantly lower cesarean section rate in the AN education group compared with the

control group (RR=0.80; 95% CI: 0.70–0.92, p=0.001). Still, the data showed heterogeneity (p=0.001, I^2 =57%). This heterogeneity was resolved by excluding the study of Mohaghegh et al.⁵² (p=0.37, I^2 =7%), and the results remained significant (RR=0.88; 95% CI: 0.82–0.94, p=0.0002) (Figure 5).

Frequency of episiotomy

There was an insignificant difference between the two groups in the episiotomy rate (RR=1.16; 95% Cl: 1.00–1.34, p=0.06), and the data were homogenous (p=0.71, I^2 =0%) (Supplementary file Figure 5).

Neonatal outcomes

Apgar score after one and five minutes

There was an insignificant difference between the AN education and the control group of neonatal APGAR score

Figure 5. Forest plot of the effect of antenatal education on rate of cesarean section: A) Before resolving heterogeneity; B) After resolving heterogeneity

(A) Before resolving heterogeneity

	Antenatal Edu	cation	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Aba et al. 2017	19	35	17	35	5.6%	1.12 [0.71, 1.76]	-
Aksoy Derya et al. 2021	12	48	15	48	3.4%	0.80 [0.42, 1.52]	
Bilgin et al. 2019	26	90	26	83	5.7%	0.92 [0.59, 1.45]	
Brixval et al. 2016	183	858	189	853	12.3%	0.96 [0.80, 1.15]	+
Calpbinici et al. 2022	1	37	2	36	0.3%	0.49 [0.05, 5.13]	
Çankaya et al. 2020	10	55	20	57	3.3%	0.52 [0.27, 1.01]	
Dai et al. 2021	9	26	14	30	3.4%	0.74 [0.39, 1.42]	
Escott et al. 2005	1	20	5	21	0.4%	0.21 [0.03, 1.64]	
Franzon et al. 2019	35	116	157	440	8.8%	0.85 [0.62, 1.15]	
Gandomi et al. 2022	5	30	17	30	2.1%	0.29 [0.12, 0.69]	
Gao et al. 2012	46	96	54	98	9.5%	0.87 [0.66, 1.14]	
Kronborg et al. 2012	112	587	120	575	10.8%	0.91 [0.73, 1.15]	
Mehdizadeh et al. 2005	3	100	10	100	1.1%	0.30 [0.09, 1.06]	
Mohaghegh et al. 2023	27	150	77	150	7.1%	0.35 [0.24, 0.51]	
Turkstra et al. 2017	31	89	31	87	6.6%	0.98 [0.65, 1.46]	
Xie et al. 2018	2488	6771	2927	6966	15.5%	0.87 [0.84, 0.91]	•
Yesildag et al. 2024	2	37	3	36	0.6%	0.65 [0.12, 3.66]	
Zafman et al. 2023	14	42	12	41	3.5%	1.14 [0.60, 2.16]	
Total (95% CI)		9187		9686	100.0%	0.80 [0.70, 0.92]	•
Total events	3024		3696				
Heterogeneity: Tau2 = 0.0		df = 17 (F		; I² = 5	7%		
Test for overall effect: Z =							0.05 0.2 1 5 20
							Antenatal Education Control

(B) After resolving heterogeneity

	Antenatal Edu	cation	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Aba et al. 2017	19	35	17	35	2.2%	1.12 [0.71, 1.76]	
Aksoy Derya et al. 2021	12	48	15	48	1.1%	0.80 [0.42, 1.52]	
Bilgin et al. 2019	26	90	26	83	2.2%	0.92 [0.59, 1.45]	
Brixval et al. 2016	183	858	189	853	12.2%	0.96 [0.80, 1.15]	+
Calpbinici et al. 2022	1	37	2	36	0.1%	0.49 [0.05, 5.13]	
Çankaya et al. 2020	10	55	20	57	1.1%	0.52 [0.27, 1.01]	
Dai et al. 2021	9	26	14	30	1.1%	0.74 [0.39, 1.42]	
Escott et al. 2005	1	20	5	21	0.1%	0.21 [0.03, 1.64]	
Franzon et al. 2019	35	116	157	440	4.8%	0.85 [0.62, 1.15]	
Gandomi et al. 2022	5	30	17	30	0.6%	0.29 [0.12, 0.69]	
Gao et al. 2012	46	96	54	98	5.8%	0.87 [0.66, 1.14]	
Kronborg et al. 2012	112	587	120	575	8.0%	0.91 [0.73, 1.15]	
Mehdizadeh et al. 2005	3	100	10	100	0.3%	0.30 [0.09, 1.06]	
Mohaghegh et al. 2023	27	150	77	150	0.0%	0.35 [0.24, 0.51]	
Turkstra et al. 2017	31	89	31	87	2.9%	0.98 [0.65, 1.46]	
Xie et al. 2018	2488	6771	2927	6966	56.2%	0.87 [0.84, 0.91]	
Yesildag et al. 2024	2	37	3	36	0.2%	0.65 [0.12, 3.66]	
Zafman et al. 2023	14	42	12	41	1.1%	1.14 [0.60, 2.16]	
Total (95% CI)		9037		9536	100.0%	0.88 [0.82, 0.94]	•
Total events	2997		3619				
Heterogeneity: Tau ² = 0.0	0; Chi ² = 17.26,	df = 16 (F	9 = 0.37);	I ² = 7%			0.05 0.2 1 5 20
Test for overall effect: Z=	3.67 (P = 0.000)	2)					0.05 0.2 1 5 20 Antenatal Education Control

after one and five minutes (MD=0.05; 95% CI: -0.04–0.14, p=0.24) and (MD=0.03; -0.03–0.10, p=0.30), respectively. The data were homogenous in both analyses (p=0.72, I^2 =0%) and (p=0.73, I^2 =0%) (Supplementary file Figure 6).

Infant's birth weight

There was an insignificant difference between the two groups in the infant weight (MD=19.13; 95% CI: -81.23–119.48, p=0.71), but the data were heterogeneous (p=0.0006, I^2 =77%). Even after resolving heterogeneity by excluding Citak Bilgin et al.³² (p=0.14, I^2 =42%), the results remained insignificant (MD= -36.12; 95% CI: -99.16–26.92, p=0.26) (Supplementary file Figure 7).

Incidence of low birth weight (<2500 g)

Finally, there was an insignificant difference between AN education and control groups in the incidence of low birth weight (RR=0.98; 95% CI: 0.83–1.17, p=0.85), and the data were homogenous (Supplementary file Figure 8).

GRADE assessment

According to GRADE, all our comparisons in the different outcomes were at varying levels of certainty (from low to moderate) (Supplementary file Table 2).

DISCUSSION

Our meta-analysis reveals that antenatal (AN) education programs significantly positively impact key psychological and clinical outcomes for expectant mothers. The primary results demonstrate an increase in childbirth self-efficacy and a notable decrease in fear of childbirth among women who participated in AN education compared to control groups. Secondary outcomes show improvements in maternal outcomes, such as increased rates of vaginal delivery and decreased rates of cesarean sections. These findings suggest that such programs effectively empower women with knowledge and confidence, potentially enhancing their ability to cope with the challenges of childbirth. The novelty of this meta-analysis lies in its comprehensive evaluation of both psychological and clinical outcomes, providing robust evidence for the multifaceted benefits of AN education programs.

The observed improvements in self-efficacy and reduced fear may be attributed to several factors inherent in antenatal education programs²³. These programs typically provide comprehensive information about pregnancy, labor, and delivery, which can demystify the process and alleviate anxiety stemming from the unknown⁶. Additionally, many antenatal classes incorporate practical coping strategies and relaxation techniques, equipping women with tangible skills to manage pain and stress during childbirth⁶⁴. The group setting of many programs may also foster a sense of community and shared experience, further bolstering confidence and reducing isolation-related fears⁶⁵.

Our analysis revealed significant clinical benefits associated with AN education. Women who received AN education showed higher rates of vaginal delivery and lower rates of cesarean section. These outcomes may

be directly linked to the psychological benefits observed. Increased self-efficacy and reduced fear could contribute to more relaxed and confident mothers, potentially facilitating smoother labor progression and reducing the likelihood of interventions⁶⁶. Moreover, educated mothers may be better equipped to make informed decisions about their care, possibly leading to fewer unnecessary cesarean sections⁶⁷.

Interestingly, we found no significant differences in episiotomy rates, Apgar scores, infant birth weight, or incidence of low birth weight between the intervention and control groups. This suggests that while AN education has clear benefits for maternal psychological well-being and mode of delivery, its impact on specific obstetric and neonatal outcomes may be limited. These results highlight the complex interplay of factors influencing childbirth outcomes and underscore the need for comprehensive prenatal care beyond education alone.

Our results align with those of Zanetti et al.8. Our metaanalysis demonstrates a significant increase in childbirth self-efficacy (SMD=2.00; 95% CI: 1.06-2.95, p<0.0001). Zanetti et al.8 also observed significant improvements, reporting outcome expectancy scores of 16.00 and efficacy expectancy scores of 20.44. Both studies highlight the positive impact of AN education on self-efficacy, with our standardized mean difference offering a more generalizable effect size. We found a significant increase in vaginal delivery rates (RR=1.10; 95% CI: 1.04-1.16, p=0.0004), consistent with the Zanetti et al.8 findings of increased frequency (OR=1.28). Both studies indicate that AN education is associated with higher rates of vaginal delivery, with our larger sample size yielding a more precise estimate. We found no significant difference in episiotomy rates (RR=1.16; 95% CI: 1.00-1.34, p=0.06), aligning with the Zanetti et al.8 results.

Our study explored additional outcomes not covered by Zanetti et al.⁸ including fear of childbirth, cesarean section rates, and various neonatal outcomes. This comprehensive approach provides a broader perspective on the effects of antenatal education. Our meta-analysis, encompassing 40 studies in the systematic review and 31 in the meta-analysis, offers potentially more robust and generalizable conclusions than the Zanetti et al.⁸ analysis of nine studies.

Nevertheless, our findings on the fear of childbirth are consistent with Stoll et al. 68, who reported that psychoeducation interventions effectively reduce the fear of childbirth. Our study further corroborates this by focusing on antenatal education programs and their impact on fear and self-efficacy. Meanwhile, our results indicating increased vaginal delivery rates and decreased cesarean section rates align with the Cochrane review by Sandall et al. 69, which found that midwife-led continuity models of care, often incorporating comprehensive antenatal education, are associated with higher rates of spontaneous vaginal birth.

The consistent positive effects of AN education on maternal psychological outcomes and mode of delivery have significant implications for maternity care practices. These findings suggest that investing in comprehensive and accessible AN education programs could be a cost-

effective strategy to enhance maternal experiences and clinical outcomes. By boosting self-efficacy and reducing fear, these programs may lead to more positive birth experiences, potentially lowering the risk of postpartum depression and improving mother-infant bonding. However, the lack of significant impact on certain neonatal outcomes indicates that while AN education is beneficial, it should be part of a broader prenatal care approach. This approach may include addressing social determinants of health, ensuring adequate nutrition, and providing comprehensive medical care throughout pregnancy. From a policy perspective, these results support the integration of high-quality AN education as a standard component of maternity care. Healthcare systems and providers should prioritize developing and implementing evidence-based education programs that are culturally appropriate and accessible to diverse populations.

Strengths and limitations

A key strength of our study is its comprehensive nature, including many randomized controlled trials (RCTs) and a substantial combined sample size. This provides strong evidence for the effectiveness of antenatal education. Additionally, our analysis considered both psychological and clinical outcomes, offering a comprehensive view of the impacts of these programs. Another strength of our study is that we exclusively included RCTs as part of the inclusion criteria for study selection.

However, several limitations should be noted. The potential risk of bias in the included studies and the high heterogeneity observed in some analyses suggest considerable intervention and outcome variability across studies. While partly resolved through sensitivity analyses, this heterogeneity indicates the need for caution in interpreting and generalizing results. Furthermore, the potential publication bias identified for primary outcomes suggests that positive results may be overrepresented in the literature. Another limitation is the variability in antenatal education programs' content, duration, and delivery methods across studies. Publication bias in this meta-analysis may arise from several factors, including the tendency to publish studies with positive findings, selective outcomes reporting, and excluding studies not in English. Despite these biases, the results of our meta-analysis can still be generalized to a broader population due to the large sample size and the inclusion of diverse study settings. However, caution should be exercised when interpreting the findings, and further research is needed to confirm these results in different contexts and populations. This makes it challenging to identify specific components that are most effective. Most of the studies included were conducted in middle- to highincome countries, which could restrict the applicability of the findings to low-resource settings.

CONCLUSIONS

Our meta-analysis provides strong evidence for the benefits of antenatal education in improving maternal psychological outcomes and promoting vaginal delivery. These findings underscore the importance of integrating high-quality antenatal education into routine prenatal care. Future research should focus on identifying the most effective components of these programs and exploring their long-term impacts on maternal and child health. Additionally, efforts should be made to develop and evaluate culturally adapted antenatal education interventions for diverse populations, particularly in low-resource settings. Policymakers and healthcare providers should prioritize the implementation and accessibility of evidence-based antenatal education programs as a key strategy to enhance maternal and neonatal outcomes.

REFERENCES

- 1. Olza I, Leahy-Warren P, Benyamini Y, et al. Women's psychological experiences of physiological childbirth: a meta-synthesis. BMJ Open. 2018;8(10):e020347. doi:10.1136/bmjopen-2017-020347
- Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27(2):89-94. doi:10.5830/CVJA-2016-021
- Wilska A, Rantanen A, Botha E, Joronen K. Parenting Fears and Concerns during Pregnancy: A Qualitative Survey. Nurs Rep. 2021;11(4):891-900. doi:10.3390/ nursrep11040082
- 4. Downer T, McMurray A, Young J. The role of antenatal education in promoting maternal and family health literacy. Int J Childbirth. 2020;10(1):52-64. doi:10.1891/JCBIRTH-D-20-00012
- 5. Antenatal care. National Institute for Health and Care Excellence. August 19, 2021. Accessed September 7, 2024. https://www.nice.org.uk/guidance/ng201
- Nieuwenhuijze M, Leahy-Warren P. Women's empowerment in pregnancy and childbirth: A concept analysis. Midwifery. 2019;78:1-7. doi:10.1016/j. midw.2019.07.015
- Hong K, Hwang H, Han H, et al. Perspectives on antenatal education associated with pregnancy outcomes: Systematic review and meta-analysis. Women Birth. 2021;34(3):219-230. doi:10.1016/j. wombi.2020.04.002
- 8. Zanetti MRD, Sosa C, Foster T, Rossello JL, Serruya S, de Múcio B. What are the benefits of antenatal education as a maternal health promotion tool? A systematic review with meta-analysis. ABCS health sciences. 2024;49:e024305. doi:10.7322/abcshs.2022150.2213
- Bandura A. Self-efficacy: Toward a unifying theory of behavioral change. Advances in behaviour research and therapy. 1978;1(4):139-161. doi:10.1016/0146-6402(78)90002-4
- Salonen AH, Kaunonen M, Astedt-Kurki P, Järvenpää AL, Isoaho H, Tarkka MT. Parenting self-efficacy after childbirth. J Adv Nurs. 2009;65(11):2324-2336. doi:10.1111/j.1365-2648.2009.05113.x
- 11. Sánchez-Cunqueiro MJ, Comeche MI, Docampo D. On the relation of self-efficacy and coping with the experience of childbirth. J Nurs Educ Pract. 2018;8(6):48-55.
- 12. Benedetto L, Ingrassia M. Parental Self-efficacy in Promoting Children Care and Parenting Qualityvv. In:

- Benedetto L, Ingrassia M, eds. Parenting: Empirical Advances and Intervention Resources. InTech; 2018:31-57. doi:10.5772/intechopen.68933
- 13. Rúger-Navarrete A, Vázquez-Lara JM, Antúnez-Calvente I, et al. Antenatal Fear of Childbirth as a Risk Factor for a Bad Childbirth Experience. Healthcare (Basel). 2023;11(3):297. doi:10.3390/healthcare11030297
- Nath S, Busuulwa P, Ryan EG, Challacombe FL, Howard LM. The characteristics and prevalence of phobias in pregnancy. Midwifery. 2020;82:102590. doi:10.1016/j.midw.2019.102590
- 15. Elvander C, Cnattingius S, Kjerulff KH. Birth experience in women with low, intermediate or high levels of fear: findings from the first baby study. Birth. 2013;40(4):289-296. doi:10.1111/birt.12065
- O'Dea GA, Youssef GJ, Hagg LJ, et al. Associations between maternal psychological distress and motherinfant bonding: a systematic review and meta-analysis. Arch Womens Ment Health. 2023;26(4):441-452. doi:10.1007/s00737-023-01332-1
- 17. Felisian S, Mushy SE, Tarimo EAM, Kibusi SM. Sociocultural practices and beliefs during pregnancy, childbirth, and postpartum among indigenous pastoralist women of reproductive age in Manyara, Tanzania: a descriptive qualitative study. BMC Womens Health. 2023;23(1):123. doi:10.1186/s12905-023-02277-4
- 18. Mantula F, Chamisa JA, Nunu WN, Nyanhongo PS. Women's Perspectives on Cultural Sensitivity of Midwives During Intrapartum Care at a Maternity Ward in a National Referral Hospital in Zimbabwe. SAGE Open Nurs. 2023;9:23779608231160476. doi:10.1177/23779608231160476
- 19. Whitworth K, Donnellan-Fernandez R, Fleet JA. Women's experiences of online antenatal education: An integrative literature review. J Adv Nurs. 2024;80(5):1761-1775. doi:10.1111/jan.15957
- Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10(10):ED000142. doi:10.1002/14651858.ED000142
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/ bmj.n71
- Lowe NK. Maternal confidence for labor: development of the Childbirth Self-Efficacy Inventory. Res Nurs Health. 1993;16(2):141-149. doi:10.1002/nur.4770160209
- 23. Garthus-Niegel S, Størksen HT, Torgersen L, Von Soest T, Eberhard-Gran M. The Wijma Delivery Expectancy/ Experience Questionnaire: a factor analytic study. J Psychosom Obstet Gynaecol. 2011;32(3):160-163. doi:10.3109/0167482X.2011.573110
- 24. Çankaya S, Şimşek B. Effects of Antenatal Education on Fear of Birth, Depression, Anxiety, Childbirth Self-Efficacy, and Mode of Delivery in Primiparous Pregnant Women: A Prospective Randomized Controlled Study. Clin Nurs Res. 2021;30(6):818-829.

doi:10.1177/1054773820916984

- 25. Aba YA, Kömürcü N. Antenatal Education on Pregnant Adolescents in Turkey: Prenatal Adaptation, Postpartum Adaptation, and Newborn Perceptions. Asian Nurs Res (Korean Soc Nurs Sci). 2017;11(1):42-49. doi:10.1016/j.anr.2017.03.003
- 26. Abbasi P, Mohammad-Alizadeh Charandabi S, Mirghafourvand M. Comparing the effect of e-learning and educational booklet on the childbirth self-efficacy: a randomized controlled clinical trial. J Matern Fetal Neonatal Med. 2018;31(5):644-650. doi:10.1080/147 67058.2017.1293031
- 27. Abuidhail J, Mrayan L, Jaradat D. Evaluating effects of prenatal web-based breastfeeding education for pregnant mothers in their third trimester of pregnancy: Prospective randomized control trial. Midwifery. 2019;69:143-149. doi:10.1016/j.midw.2018.11.015
- 28. Akinwaare MO, Oluwatosin OA. Effect of goal-oriented prenatal education on birth preparedness, complication readiness and institutional delivery among semi-urban pregnant women in Nigeria: A quasi-experimental study. PLoS One. 2023;18(7):e0289414. doi:10.1371/journal.pone.0289414
- 29. Aksoy Derya Y, Altiparmak S, AkÇa E, GÖkbulut N, Yilmaz AN. Pregnancy and birth planning during COVID-19: The effects of tele-education offered to pregnant women on prenatal distress and pregnancy-related anxiety. Midwifery. 2021;92:102877. doi:10.1016/j.midw.2020.102877
- 30. AlSomali Z, Bajamal E, Esheaba O. The Effect of Structured Antenatal Education on Childbirth Self-Efficacy. Cureus. 2023;15(5):e39285. doi:10.7759/cureus.39285
- 31. Aslantekin Özçoban F, Ergün S, Erkal Aksoy Y. Effects of health literacy education on adaptation to pregnancy, self-efficacy, fear of childbirth and health literacy in Turkish pregnant women: A randomized, controlled trial. Health Soc Care Community. 2022;30(2):e537-e549. doi:10.1111/hsc.13690
- 32. Citak Bilgin N, Ak B, Ayhan F, Kocyigit F, Yorgun S, Topcuoglu MA. Effect of childbirth education on the perceptions of childbirth and breastfeeding self-efficacy and the obstetric outcomes of nulliparous women*,**,**. Health Care Women Int. 2020;41(2):188-204. doi:10.1080/07399332.2019.1672171
- 33. Brixval CS, Thygesen LC, Axelsen SF, et al. Effect of antenatal education in small classes versus standard auditorium-based lectures on use of pain relief during labour and of obstetric interventions: results from the randomised NEWBORN trial. BMJ Open. 2016;6(6):e010761. doi:10.1136/bmjopen-2015-010761
- 34. Calpbinici P, Özçirpan ÇY.The effect of the training program provided to primiparous pregnant women through the motivational interview method on their fear of childbirth, childbirth self-efficacy, and delivery mode: a randomized controlled trial. Curr Psychol. 2023;42(1):21609-21623. doi:10.1007/s12144-

022-03285-7

- 35. Dai L, Shen Q, Redding SR, Ouyang YQ. Simulation-based childbirth education for Chinese primiparas: A pilot randomized controlled trial. Patient Educ Couns. 2021;104(9):2266-2274. doi:10.1016/j.pec.2021.02.036
- Desmawati, Kongsuwan W, Chatchawet W. Effect of Nursing Intervention Integrating an Islamic Praying Program on Labor Pain and Pain Behaviors in Primiparous Muslim Women. Iran J Nurs Midwifery Res. 2019;24(3):220-226. doi:10.4103/ijnmr. IJNMR_36_18
- 37. Duncan LG, Cohn MA, Chao MT, Cook JG, Riccobono J, Bardacke N. Benefits of preparing for childbirth with mindfulness training: a randomized controlled trial with active comparison. BMC Pregnancy Childbirth. 2017;17(1):140. doi:10.1186/s12884-017-1319-3
- 38. Escott D, Slade P, Spiby H, Fraser RB. Preliminary evaluation of a coping strategy enhancement method of preparation for labour. Midwifery. 2005;21(3):278-291. doi:10.1016/j.midw.2004.12.009
- 39. Firouzan L, Kharaghani R, Zenoozian S, Moloodi R, Jafari E. The effect of midwifery led counseling based on Gamble's approach on childbirth fear and self-efficacy in nulligravida women. BMC Pregnancy Childbirth. 2020;20(1):522. doi:10.1186/s12884-020-03230-1
- 40. Franzon ACA, Oliveira-Ciabati L, Bonifácio LP, et al. A communication and information strategy in health and preparation for childbirth: a randomized cluster trial (PRENACEL). Estratégia de comunicação e informação em saúde e a percepção de sentirse preparada para o parto: ensaio aleatorizado por conglomerados (PRENACEL). Cad Saude Publica. 2019;35(10):e00111218. doi:10.1590/0102-311X00111218
- 41. Gandomi N, Sharifzadeh G, Torshizi M, Norozi E. The effect of educational intervention based on self-efficacy theory on pregnancy anxiety and childbirth outcomes among Iranian primiparous women. J Educ Health Promot. 2022;11:14. doi:10.4103/jehp.jehp_1548_20
- 42. Gao LL, Chan SW, Sun K. Effects of an interpersonal-psychotherapy-oriented childbirth education programme for Chinese first-time childbearing women at 3-month follow up: randomised controlled trial. Int J Nurs Stud. 2012;49(3):274-281. doi:10.1016/j.ijnurstu.2011.09.010
- 43. Hatamleh R, Abujilban S, AbuAbed ASA, Abuhammad S. The effects of a childbirth preparation course on birth outcomes among nulliparous Jordanian women. Midwifery. 2019;72:23-29. doi:10.1016/j.midw.2019.02.002
- 45. Ip WY, Tang CS, Goggins WB. An educational intervention to improve women's ability to cope with childbirth. J

- Clin Nurs. 2009;18(15):2125-2135. doi:10.1111/j.1365-2702.2008.02720.x
- 46. Khademioore S, Ebrahimi E, Khosravi A, Movahedi S. The effect of an mHealth application based on continuous support and education on fear of childbirth, self-efficacy, and birth mode in primiparous women: A randomized controlled trial. PLoS One. 2023;18(11):e0293815. doi:10.1371/journal.pone.0293815
- 47. Kronborg H, Maimburg RD, Væth M. Antenatal training to improve breast feeding: a randomised trial. Midwifery. 2012;28(6):784-790. doi:10.1016/j.midw.2011.08.016
- 48. Madhavanprabhakaran GK, D'Souza MS, Nairy K. Effectiveness of childbirth education on nulliparous women's knowledge of childbirth preparation, pregnancy anxiety and pregnancy outcomes. Nurs Midwifery Stud. 2017;6(1). doi:10.5812/nmsjournal.32526
- 49. Maimburg RD, Vaeth M, Dürr J, Hvidman L, Olsen J. Randomised trial of structured antenatal training sessions to improve the birth process. BJOG. 2010;117(8):921-928. doi:10.1111/j.1471-0528.2010.02584.x
- 50. Maimburg RD, Væth M, Hvidman L, Dürr J, Olsen J. Women's worries in first pregnancy: results from a randomised controlled trial. Sex Reprod Healthc. 2013;4(4):129-131. doi:10.1016/j.srhc.2013.10.001
- 51. Mehdizadeh A, Roosta F, Chaichian S, Alaghehbandan R. Evaluation of the impact of birth preparation courses on the health of the mother and the newborn. Am J Perinatol. 2005;22(1):7-9. doi:10.1055/s-2004-837738
- 52. Mohaghegh Z, Javadnoori M, Najafian M, et al. Effect of birth plans integrated into childbirth preparation classes on maternal and neonatal outcomes of Iranian women: A randomized controlled trial. Front Glob Womens Health. 2023;4:1120335. doi:10.3389/fgwh.2023.1120335
- 53. Mullany BC, Becker S, Hindin MJ. The impact of including husbands in antenatal health education services on maternal health practices in urban Nepal: results from a randomized controlled trial. Health Educ Res. 2007;22(2):166-176. doi:10.1093/her/cyl060
- 54. Noel-Weiss J, Rupp A, Cragg B, Bassett V, Woodend AK. Randomized controlled trial to determine effects of prenatal breastfeeding workshop on maternal breastfeeding self-efficacy and breastfeeding duration. J Obstet Gynecol Neonatal Nurs. 2006;35(5):616-624. doi:10.1111/j.1552-6909.2006.00077.x
- 55. Öztürk R, Ergün S, Özyazıcıoğlu N. Effect of antenatal educational intervention on maternal breastfeeding self-efficacy and breastfeeding success: a quasi-experimental study. Rev Esc Enferm USP. 2022;56:e20210428. doi:10.1590/1980-220X-REEUSP-2021-0428
- 56. Vasegh Rahimparvar SF, Hamzehkhani M, Geranmayeh M, Rahimi R. Effect of educational software on self-efficacy of pregnant women to cope with labor: a randomized controlled trial. Arch Gynecol Obstet. 2012;286(1):63-70. doi:10.1007/s00404-012-2243-4
- 57. Piro SS, Ahmed HM. Impacts of antenatal nursing interventions on mothers' breastfeeding self-efficacy:

- an experimental study. BMC Pregnancy Childbirth. 2020;20(1):19. doi:10.1186/s12884-019-2701-0
- 58. Serçekuş P, Başkale H. Effects of antenatal education on fear of childbirth, maternal self-efficacy and parental attachment. Midwifery. 2016;34:166-172. doi:10.1016/j.midw.2015.11.016
- 59. Turkstra E, Mihala G, Scuffham PA, et al. An economic evaluation alongside a randomised controlled trial on psycho-education counselling intervention offered by midwives to address women's fear of childbirth in Australia. Sex Reprod Healthc. 2017;11:1-6. doi:10.1016/j.srhc.2016.08.003
- 60. Uludağ E, Serçekuş P, Vardar O, Özkan S, Alataş SE. Effects of online antenatal education on worries about labour, fear of childbirth, preparedness for labour and fear of covid-19 during the covid-19 pandemic: A single-blind randomised controlled study. Midwifery. 2022;115:103484. doi:10.1016/j.midw.2022.103484
- 61. Xie RH, Tan H, Taljaard M, et al. The Impact of a Maternal Education Program Through Text Messaging in Rural China: Cluster Randomized Controlled Trial. JMIR Mhealth Uhealth. 2018;6(12):e11213. doi:10.2196/11213
- 62. Yesildag B, Golbasi Z. Effects of the web-based birth preparation programme and motivational interviews on primigravida women: Randomized-controlled study. Int J Nurs Pract. 2024;30(1):e13207. doi:10.1111/ijn.13207
- 63. Zafman KB, Riegel ML, Levine LD, Hamm RF. An interactive childbirth education platform to improve pregnancy-related anxiety: a randomized trial. Am J Obstet Gynecol. 2023;229(1):67.e1-67.e9. doi:10.1016/j.ajog.2023.04.007
- 64. Escott D, Slade P, Spiby H. Preparation for pain management during childbirth: the psychological aspects of coping strategy development in antenatal education. Clin Psychol Rev. 2009;29(7):617-622. doi:10.1016/j.cpr.2009.07.002
- 65. Perkins DD, Long DA. Neighborhood sense of community and social capital: A multi-level analysis. In: Fisher AT, Sonn CC, Bishop BJ, eds. Psychological sense of community: Research, applications, and implications. Springer; 2002:291-318. doi:10.1007/978-1-4615-0719-2_15
- 66. Brunton R, Simpson N, Dryer R. Pregnancy-Related Anxiety, Perceived Parental Self-Efficacy and the Influence of Parity and Age. Int J Environ Res Public Health. 2020;17(18):6709. doi:10.3390/ ijerph17186709
- 67. Zahroh RI, Sutcliffe K, Kneale D, et al. Educational interventions targeting pregnant women to optimise the use of caesarean section: What are the essential elements? A qualitative comparative analysis. BMC Public Health. 2023;23(1):1851. doi:10.1186/s12889-023-16718-0
- 68. Stoll K, Swift EM, Fairbrother N, Nethery E, Janssen P. A systematic review of nonpharmacological prenatal interventions for pregnancy-specific anxiety and fear

- of childbirth. Birth. 2018;45(1):7-18. doi:10.1111/birt.12316
- 69. Sandall J, Soltani H, Gates S, Shennan A, Devane D. Midwife-led continuity models versus other models of care for childbearing women. Cochrane Database Syst Rev. 2016;4(4):CD004667. doi:10.1002/14651858. CD004667.pub5

CONFLICTS OF INTEREST

The authors have completed and submitted the ICMJE Form for disclosure of Potential Conflicts of Interest and none was reported.

FUNDING

There was no source of funding for this research.

ETHICAL APPROVAL AND INFORMED CONSENT

Ethical approval and informed consent were not required for this study.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created.

AUTHORS' CONTRIBUTIONS

AYZ and HAF: conceptualized the study, supervised the project, and drafted the manuscript. SEI, FHI, HHA and AMA: conducted the literature search, data collection, and analysis. NHA, AMAM, IHA, NMA, AAEA and DAG: participated in data collection and review of the manuscript. SMAA, AAAA, NSYE, RAA, AAF, AEEE and AMSM: assisted with data analysis and manuscript revision. All authors read and approved the final version of the manuscript.

PROVENANCE AND PEER REVIEW

Not commissioned; externally peer reviewed.